P2P based intrusion detection
ZOLTAN CzIrRKOS, GABOR HosszU

Budapest University of Technology and Economics, Department of Electron Devices
hosszu@nimrud.eet.bme.hu

Keywords: Peer-to-Peer, P2P, intrusion detection, NIDS, overlay

This paper presents a novel security method. The software entities utilizing this method create a peer-to-peer application level
network, which is then used to share information about intrusion attempts detected. Data collected this way is then used to
enhance the protection of all participants. The system is completely decentralized, thus it remains functional over an unsta-
ble network or when many peers are attacked at once. The Kademlia P2P overlay is found to be the most suitable to create
such a network. The stability of the overlay and the broadcast algorithms are both analyzed in this article.

1. Introduction

A number of security systems are presented in the lit-
erature, which run instances of applications and differ-
ent hosts which communicate among each other [3],
[4]. The novelty of the solution developed by us is that
its nodes create a P2P (Peer-to-Peer) overlay on the
Internet. The organization is automatic and does not
require any user intervention. This network model pro-
vides great stability, which is needed by the nodes to
quickly and reliably exchange information. The system
can remain operative even on unreliable networks due
to attacks and link failures. The software that imple-
ments this solution is named Komondor, after a famous
Hungarian shepherd’s dog.

Section 2 of our paper presents related work and
systems, which are similar to ours. P2P overlay net-
works are explained, and also two distributed intrusion
detection systems are mentioned. Section 3 shows the
design goals and internal operation of the Komondor
system. Section 4 explains the Kademlia overlay net-
work in detail, this is necessary to understand why it is
the most suitable overlay to use as a substrate of Ko-
mondor. Section 5 summarizes our results and experi-
ence collected until now.

2. Related work

2.1. P2P overlays

Application level networks (or sometimes called over-
lays) with peer-to-peer (P2P) topology can be struc-
tured or unstructured.

The nodes (peers) of unstructured networks can
easily be dispensed. The network handles joining and
leaving nodes in a very flexible way. The usual queries
(data lookups) are also processed by the nodes, for-
warding the lookup query to each other. Examples for
these unstructured networks are Gnutella, Freenet and
FastTrack.

VOLUME LXIV. + 2009/1

Structured peer-to-peer networks usually implement
a distributed hash table (DHT). These networks store
key-value pairs and enable the users to quickly lookup
a value associated with a precisely given key. In con-
trast to unstructured networks, logical links between
nodes are determined by a set of rules; the topology of
the network is exactly defined. Every stored piece of
information (or file) is sent to a precisely selected node.
Nodes are assigned a node identifier (NodelD) chosen
from a fairly large interval of numbers (for example, 160
bits).

Similarly, each stored piece of data is assigned a
key, which can be a hashed value of a file name, for
example. The output of the hash function is in the same
domain as the node identifiers. Every node stores key-
value pairs, which have their hashed keys closest to its
own Nodeld. So if one knows the key, it is easy to find
the node storing the value associated with that key. This
is called consistent hashing [8,9].

Structured networks are different from each other in
terms of topology, routing algorithms and the distance
function (which calculates the distance between two
identifiers, or a hashed key and an identifier.)

2.2. Distributed intrusion detection

The usual distributed intrusion detection systems
deployed on networks are centralized, and are gener-
ally used for collection of data only [4]. Applications
which are decentralized and also capable of interven-
tion (intrusion prevention) are presented only lately.

The prevention system named PROMIS (and its an-
cestor, Netbiotic) uses the JXTA framework to enable
nodes to exchange information of detected intrusion
attempts [12]. It builds an overlay network which is par-
tially centralized. The nodes entering the PROMIS net-
work receive information about the number and rate of
suspicious events detected, and they tune the securi-
ty level of the Web browser built into the operating sys-
tem accordingly. This method gives a general protection
against malicious applications, but also reduces usabi-

INFOCOMMUNICATIONS JOURNAL

lity of the system. The approach is somewhat similar to
the epidemic prevention measures used in daily life.

The spam (e-mail junk) filtering system named Spam-
watch is built on the Tapestry network [13]. The appli-
cation is a plugin for the e-mail client. The hashed con-
tent of the e-mail messages marked by users as junk
mail are stored in a distributed hash table; the same
message on another user’s computer can automatical-
ly be discarded. By using the DHT, the lookup of a mes-
sage is fast, and generates little network traffic.

3. The proposed system

In the Komondor system, detection of intrusion attempts
is distributed, by means of a DHT’s based on the Ka-
demlia network [1]. The following goals were important
during the development of the system:

» Building a stable overlay network

to exchange information.

» The data should be exchanged as quickly

as possible.

 Decentralization of the system, enabling nodes

to be missing.

» Masking the security holes of nodes based

on intrusion attempts detected.

The several hosts running the Komondor software
create a virtual, application level network, which is some-
times called an overlay. The speed of exchanging data
about intrusion attempts largely depends on the net-
work model employed. The system is built on a peer-to-
peer (P2P) based overlay to ensure decentralization
and stability [11], in contrast to the client-server model
with a much higher risk of failure.

In the Komondor system, a structured network, a DHT
is employed to store data of intrusion attempts. Keys
are |IP addresses of intruders, values are the informa-
tion of intrusion attempts. Report of intrusion attempts
from a specific attacker will be sent to a single node, as
all nodes use the same hash functions. If that node
analyzes the reports and sees that the IP address in
question belongs to an attacker, it initiates a

this alone does not necessarily indicate an attacker. It
could possibly be a really lost connection, caused by
some link failure, or an e-mail sending canceled upon
the user’s request. But if this event is detected on ma-
ny of the nodes, then it immediately becomes suspicious.
In the Komondor system, the IP address of the attack-
er determines which node will be the collector of infor-
mation. That node will be responsible for processing data
about a specific attacker; so sharing information about
every suspicious event is necessary.

The main goal of our research is the investigation of
the stability and reliability of the Kademlia P2P overlay
system, and also the exploration of possibilities of peer-
to-peer based intrusion detection. Our Komondor soft-
ware has Linux and Microsoft Windows versions cur-
rently implemented. It uses Snort and the system log
files to collect information about events; to create pro-
tection, it tunes the firewall of the operating system.
Other detection and prevention modules are also plan-
ned to be developed in the later versions.

4. Using the Kademlia overlay
in Komondor

4.1. The Kademlia overlay system

To investigate the stability and reliability of the Kadem-
lia overlay, and to understand the broadcast messaging
system built over the overlay, we outline the topology and
internal operation of Kademlia in this section.

Kademlia uses distributed hash tables (DHT’s). The
nodes participating in a Kademlia network can be rep-
resented with a binary tree [5]. Kademlia nodes store the
same amount of connection info (IP address, port num-
ber) for every subtree. These lists are called k-buckets
in the original paper. The size of these lists is usually de-
noted by k, which is a system-wide configuration para-
meter. In a well populated network, taller subtrees usu-
ally contain a lot more nodes than k, so a node has rela-

Fig. 1. Routing in Kademlia

broadcast message, to alert other Komondor
nodes of the possible danger. Every node is
interested in receiving information which en-
ables it to strengthen its protection. Compared
to PROMIS, the protection built up by Komon-
dor is not general; rather it is against the recog-
nized attackers only.

Detection at multiple points and collection
of data can be very efficient. Consider the fol-
lowing example. Let us assume that an attack-
er is trying to find an open, badly configured &
SMTP server to send junk e-mail. It tries to con-
nect to many nodes protected by the Komon-
dor system to find out which nodes have an
SMTP service at all. One node sees an incom-
ing connection which is immediately lost. From
the viewpoint of a single host, an event like

VOLUME LXIV. » 2009/1

P2P based intrusion detection

tively less information about the distant subtrees, as
compared to the subtrees in close proximity.

Routing is shown on Fig. 1. (In papers about Kadem-
lia, the subtrees which have only one node are usually
not shown as a tree, only as a leaf. In the example be-
low, all nodes have 5 bit identifiers.) If the node with the
identifier 00110 would want to send a message to the
node with ID 11100, it has nothing else to do that send
a message to anyone in the 1* subtree, who will have
greater knowledge of nodes in the 11* subtree and so
on.

The order of lookups is shown by the arrows with num-
bers. The sending of message is completed in O(log n)
steps this way. The distance of two identifiers is calcu-
lated using the exclusive or function. The magnitude of
the distance between two peers is proportional to the
height of the subtree containing both of them. This is
why this network can be represented as a binary tree,
and why it is called the XOR topology. Due to the sym-
metry of the XOR function, the distribution of incoming
and outgoing messages is the same. The routing table
of nodes is automatically refreshed by network traffic;
so the network strengthens itself with all messages.

Comparing Kademlia to other DHT systems, its un-
usual property is the freedom of nodes (also requiring
Kademlia to use UDP instead of TCP.) To lookup a va-
lue associated with the given key, the message is not
forwarded from node to node, but rather a node itself
finds out who the destination of the message is. This
makes handling of replication very easy. A node intend-
ing to store a key—value pair does not send data to the
closest node to the key; rather it sends it to the k clos-
est nodes. By selecting a value for k, the stability of the
overlay can be tuned. But as we will later see, by select-
ing k>1, the availability of data stored can also be en-
hanced.

The Kademlia protocol requires nodes to maintain
lists of other nodes with at least k entries for every sub-
tree. Connection information is refreshed in every hour,
if necessary. The value of k must be chosen so that it
would be very unlikely for all k nodes to quit the net-
work in an hour. The nodes quitting the network are not
required to send their stored key—value pairs to other
nodes in the network. So if a node disappears, data
stored by it would also be gone, if replication was not
implemented. Note that in a DHT, being able to com-
municate with a node implies being able to retrieve key—
value pairs stored by that node. So the level of replica-
tion must be the same as the number of nodes in a k-
bucket. Thus this is the only system-wide configuration
parameter needed by Kademlia.

4.2. Reliability of Kademlia

The overlay in the Komondor system is created by
a version of Kademlia modified only slightly compared
to the original. The conclusions presented in the follow-
ing sections are also applicable to the original overlay.
Our test runs of the Komondor system proved that rep-
lication in Kademlia is much more important than in

VOLUME LXIV. + 2009/1

other types of overlay networks, as it is very common
in a real environment that nodes cannot connect to each
other, due to packet losses, network address translation
or other reasons. Therefore it is possible that a key—
value pair stored by a single node cannot be reached
by others, as some may not be able to connect to it. Rep-
lication partially solves this problem. If the pair is stored
not only by a single node, but by a range of nodes (ie. k
nodes), replication increases the probability that at least
one node will be able to answer the lookup request.
It is also possible that some k-buckets of nodes are not
correctly populated with the addresses of other nodes
at a time; replication in this case will also solve the prob-
lem of unavailability. (The routing tables of structured
networks may be incorrect for small intervals, when a lot
of nodes join or quit in a short time. This is called high
churn [10].)

To prove the above statement, we developed a sim-
ulator application for Kademlia. It is called Kadsim. Al-
though much of the simulations were focused on the
Komondor network and its behavior, the results are ge-
neral and can be applied to other Kademlia-based net-
work, too. Kadsim works the following way. Given a num-
ber of nodes, it creates a connectivity matrix, which is
essentially the adjacency matrix of the possible commu-
nication between nodes.

Also given a message, which is virtually a random-
ly chosen identifier; in the Komondor system, a hashed
value of the attacker’s IP address. The most important
demand of Komondor against the overlay is that there
should be always at least one node, where reports about
a specific attacker can be collected. So Kadsim models
the case when all nodes in the overlay detect some at-
tack from the IP address in question. Every node hash-
es the IP address, and looks up the resulting identifier
in the overlay. Nodes that cannot be reached by some
other nodes do not count. (However, they may be rea-
ched by others.) Usual DHT networks, storing files for ex-
ample, work exactly the same way; a given key is look-
ed up in a tight range of nodes near the identifier.

Finishing the simulation, Kadsim sorts the number of
messages received by each node, using the distance
of NodelD’s for the comparison. The results are plotted
in Fig. 2. Ideally, when there are no network errors, and
all links are operational, the resulting function is a single
step: the k closest nodes to the key get all messages,
and others get no messages at all. If there are link fail-
ures, the function will be lower and wider (see Fig. 2). For
example, if the level of replication is k=16, and one of
the nodes cannot access other nodes who are the 12th
and 15th closest to the key, it will store key at the 16th
and 17th closest ones.

If the distribution of link failures is flat, there will be
no node in the overlay, where reports of attacks can be
fully collected, no matter how high the level of replica-
tion is. In such a case, Kademlia would be a very bad
choice for overlay topology. Real networks like the In-
ternet are fortunately not like this: link failures are un-
evenly scattered throughout the network. There are hosts,

INFOCOMMUNICATIONS JOURNAL

Messages received from percent of nodes

Y ST Levienny, Liviiiinss I PRI .. N

bers. Also the output of hash functions can also
be treated as a random number. The network
seems to choose the node responsible for a
specific key randomly. This property makes mod-
elling the overlay relatively simple.

The error ratio for the node with identifier mis

given by (1): a
h(m)=c-(£] ; (1)
n

where nis the total number of nodes (0sm<n).
a sets the distribution of errors a =2 for quadrat-
ic distribution. ¢ is a constant setting the maxi-
mum number of errors. These parameters can
be selected experimentally, and they depend on
the actual size and properties of the underlying
physical network.

0 5 10 15 20 25
Nodes close to the key (in increasing distance)

30 Function (1) should output an integer number,
as the error ratio multiplied by the number of all

Fig. 2.
Storing keys in a Kademlia overlay;
replication is 16-fold, ratio of failing links is 20%

which have public IP address, those are easy to con-
nect to. Others are behind network address translation,
and cannot always be reached. The exact distribution
can be very different for various networks; Kadsim mod-
els the distribution as a polynomial function. When this
distribution is not flat, there are nodes who can receive
the attack report with very high probability.

Simulation showed that a moderately high level of
replication, k=8 sufficiently ensures that a suitable node
will exist in the network with high probability (Fig. 3). For
a hundred of nodes this seems to be too much, com-
pared to other P2P networks, but increasing the num-
ber of nodes there is no need to increase replication.
There will be at least one of the selected nodes which
are able to communicate with others.

4.2.1. Mathematical Modelling of Link Failures
Nodes joining a DHT overlay usually randomly choose
their own node identifier from a very large range of num-

Fig. 3.
Ratio of successful lookups in the Kademlia overlay

0.01

nodes, nifi(m), is an integer. For a high number
of errors, the difference is negligible. Approximations
using equation (1) will not be applicable to networks
with a very low error rate, where n*h(m) is almost zero
for the whole range of nodes. 0.3 errors have no real-
world meaning, only 0 or 1 error.

As the underlying physical network, the Internet is
not perfect; we also cannot expect the overlay to be so.
Rather we can set a numeric expectation, for example
we would like our network to be able to retrieve data in
99% of all cases. If the ratio of allowable errors is =
1%, the probability of a successful lookup is 1-8, if the
inequation h(m)< 3 holds for a given node. Those are
the nodes, which can be accessed from most other ones.

As node identifiers are usually as large as 128 or
160 bits, the range of addresses can be treated as con-
tinuous. As all nodes bear randomly selected identi-
fiers, and also the output of hash functions applied to
keys seem to be random and evenly distributed over
the range of possible identifiers, m/n is virtually a ran-
dom number chosen from the interval [0,1). If we solve
the inequality to express m/n, we get the number of
nodes which match the specified criterion:

n &

Let P’ be the probability of a successful lookup. As
0<m/n<1 holds, and m/n is randomly chosen over the
interval, inequality (3) will hold for P

P'= (i/E (3)
o

If the overlay employs replication, data is stored at
k different points of the network. So we have k chance
to choose different random numbers from the interval
[0,1). If we manage to choose a suitable number at least
once, the lookup will be successful. Calculating the pro-
bability of all lookups failing, and subtracting that value
from 1, we get (4).

P=1-Q-PY (@)

VOLUME LXIV. » 2009/1

P2P based intrusion detection

Formula (4) gives the probability of successful look-
ups with a given ratio of networks failures. The neces-
sary level of replication can be calculated with the for-
mula. Fig. 4 shows the ratio of cases when the proba-
bility of successful lookups is at least 99% (1% failure
allowed), as a function of network failures and level of
replication.

As one can see, with a relatively high ratio of failing
links (10%), replication k=5 is enough to ensure suc-
cessful lookups. If the overlay consists only of a small
number, for example tens of nodes, k=5 may seem too
much. But this k=5 can be used to any number of
nodes. The formula gives results which closely match
our simulation; the difference can only be seen for small
error rates, as it was expected due to the approxima-
tion in (1).

100

Fig. 4.
Approximated ratio of successful lookups in Kademlia

4.3. Broadcast messages in P2P overlays

Broadcast (one to all) messages in P2P overlays are
not very common, due to the very big number of nodes.
Usually no algorithm is designed to send these broad-
cast messages, as this contradicts with the main design
goal of scalability. However there are applications which
need this type of messaging, Komondor is an example.
When a node has collected enough information mak-
ing sure that an IP address belongs to an attacker, it ini-
tiates a broadcast message over the network. Another

The second is, that during sending the message,
there will be no need to create new connections or initi-
ate lookups. The topology can essentially be seen as an
implicit multicast tree.

The Komondor system is an application where the
fast sending of broadcast messages is essential. It is
usually very easy to create reliable messaging over an
unreliable channel, however detecting a packet loss
needs quite long time. According to our tests, the broad-
cast algorithms presented in our article send the mes-
sage in a few seconds to all nodes; to detect loss of a
packet alone needs more time than this. If we do not
try to resend the packets, the simulation will give us the
shortest time in which the broadcast can be finished.
Using replication, the time can be shorter than it is need-
ed to detect packet loss. Simulating broadcast without
resends will also give us the ratio of cases when the
broadcast is successful, and is able to keep this time.

We developed three algorithms to send broadcast
messages over Kademlia.

4.3.1. Broadcast Using Flooding

All nodes send received messages to any other nodes
they know. As a specific message can be received in
duplicates, every broadcast should be tagged with a
unique identifier. Known messages are dropped by
nodes. This solution is simple, but it generates a lot of
network traffic, especially when k-buckets are large. It
has no practical use, but is rather a theoretical refer-
ence; by simulating this method on an overlay, one can
see the time the broadcast requires.

4.3.2. Broadcast Using the Topology

In the second algorithm, every subtree in the Kadem-
lia overlay is assigned a node, which is responsible for
broadcasting the message in its own tree (Fig. 5). The
node with the identifier (00110, black dot) initiates the
broadcast by sending it to one freely chosen node from
each of its k-buckets (normal arrows). These nodes are
11000, 01010, 00100 and 00000. The nodes receiving
the message are responsible for sending them on in their
own subtrees, which are 1****, 01***, 000** and 0010*.
This shown using dashed lines. Broadcast using this
method will be finished in logarithmic time.

Fig. 5. Broadcast messaging in Kademlia

common application of broadcast messages is

implementing lookups for partially given keywords, Il...

as this is not an elementary service in DHT net-
works (for example, one cannot lookup a partially
given file name.)

The inherent topology of structured networks
can be used to quickly and efficiently deliver
broadcast messages. Using the built in topology
will always give the best results. One reason
for this, that the topology is built such a way that
any node can be reached in logarithmically ma-
ny steps, so the broadcast message will reach
all nodes in logarithmic time.

00...00

VOLUME LXIV. + 2009/1

INFOCOMMUNICATIONS JOURNAL

Nodes forwarding messages must know which sub-
tree they are responsible for. Every message is tagged
with a small integer, which denotes the height of the
subtree; this shows how many prefix bits the address of
the subtree should share with the NodelD. The Kadem-
lia protocol makes sure that at least one node is always
known for every subtree; there is no need to maintain an
auxiliary routing table for the broadcast.

Messages are forwarded to the subtree and all smal-
ler trees:

broadcast (text, height)
for i=height to nunber of bits
i f bucket i is not enpty, then
sel ect a random node from bucket i
send t he nessage to the node: text, i+1
endi f
endf or

This method is very cost-efficient as there are no dup-
licate messages. The number of messages sent grows
exponentially, so the complete process takes logarith-
mic time. Problems can arise when there are packet los-
ses on the network, as not only single nodes, but com-
plete subtrees will miss the broadcast. Messages are
actually directed to subtrees in this method: the original
sender sends the message to the other half tree, and
is itself responsible for his own half tree. Then it sends
to the other quarter of the overlay, and is responsible
for its own quarter and so on. Every subtree has a single
responsible node.

- . -

N % AN O
% o N ,a,/.\.a, (\ n/\ {’ \ \"',\ (\3
Ii'll (\) 4 {ll T |) 4)4 (\ [+ I';il
I il L N JIo ;'..'l

|

Fig. 6.

4.3.3. Broadcast Using the Topology
with Replication

Addressing the problem mentioned above, the two
algorithms can be combined. This algorithm is similar to
the second, but from every subtree, not a single, rather
multiple nodes are selected to be responsible for for-
warding the message. This way, the probability of skip-
ping a subtree is falling rapidly. Duplicate messages are
possible in this case, so a unique identifier is required
for all broadcasts initiated. Replication level can vary
from two to k, the size of k-buckets.

4.4. Comparison of broadcast algorithms

To evaluate the algorithms presented above, we deve-
loped a simple, application specific simulator. The pro-
gram records the following data:

— number of all messages sent,

— number of messages per node,

— the number and ratio of nodes receiving

the broadcast,

— the time required for sending the message

to as many nodes as possible.

In terms of traffic costs, flooding gives the worst re-
sults. The number of messages grows rapidly with in-
creasing the node count or sizes of k-buckets. The sec-
ond algorithm using the implicit multicast tree evidently
results one message for each node. For the third me-
thod, the number of messages grows rapidly for large
k-buckets, but only slowly for increasing the number of
nodes. For k=5, there were 7 messages/node for an
overlay of 100 nodes, and only 9 for 1000 nodes.

To evaluate the reliability of the algorithms, we simu-
lated an overlay of 200 nodes. Packet loss ratio varied
from 0% to 20%, replication from onefold to fivefold.
Flooding almost always yields perfect results; the error
is smaller than line width in Fig. 7. This is due to the
enormous number of messages. The reliability of the en-
hanced algorithm is of course the same as the second
for k=1, so it is not denoted individually. In turn, using
k=2, this algorithm produces 90% reliability even if one
fifth of the packets lost; k=3 gives 97%.

Fig. 7.
Reliability of different broadcast algorithms in Kademlia

Implicit tree broadcast messaging in Kademlia

Fig. 6 shows a simulation of this method.
Nodes shown as white dots received the mes-
sage, while black ones did not. As one can see,
there are complete subtrees drawn in black. It
is possible for such a message to be lost, which
was sent to a high subtree. In a worst case sce-
nario, the number of nodes not getting the mes-
sage can be more than 50%, independent from
the packet loss ratio. Although the network is
decentralized, this algorithm is not in its es-
sence; as the importance of messages is vast-
ly different, depending on which subtree they
are addressed to.

90%
80%
70%
60%

50%

100% ..

40%
20

flooding -
enhanced —

3

" yon
rephicat

VOLUME LXIV. » 2009/1

P2P based intrusion detection

The time required to complete the broadcast is
mainly determined by the latencies of the con-
tacts stored in the k-buckets. If we go against the
recommendation of the original Kademlia paper,
and instead of the oldest contacts, we select a
contact with low latency for the k-buckets, the
time of lookups and broadcast both decreases
significantly. The latency (or the round trip time,
RTT) can easily be measured using PING mes-
sages, but it can also be approximated [6]. In
the case simulated by our Kadsim application,
the broadcast was two and a half times faster. Of
course this ratio depends on the distribution of
latencies, too.

The quickest method is of course the flooding
(Fig. 8), as messages sent in every possible di-

Oiutas

Oturul

Ohunor

Omonolit
QOkende
Ofajsz
Ohorka

Onemere

Obuda

Orockford

rection will obviously travel the quickest way, too.
Replication will speed up the algorithm for randomly se-
lected nodes, and for RTT selected nodes, it will not.
The implicit tree broadcast algorithm is the slowest, due
to its rigidity. The third algorithm is between the previ-
ous two; using replication, it can be faster than the im-
plicit tree algorithm using RTT selected nodes. This is
also caused by messages travelling more than one way
at a time.

Fig. 9. A Komondor overlay in operation

reliability of the two elementary services, namely send-
ing attack reports and broadcasting alerts can both be
increased using replication. The only system-wide con-
figuration parameter affecting the substrate, the level
of this replication can be determined in advance, using
the methods presented.

Fig. 9 presents a screenshot of a smaller

6500 ’ r

6000

5500

5000

4500

4000

3500

3000

2500

2000

time for all nodes to get the message (ms)

1500

flooding ——

flooding with rtt selection
enhanced

enhanced with rtt selection = = =

Komondor test overlay, with its binary tree to-
pology. During its test runs lasting several
months, it detected and prevented many intru-
sion attempts, and the substrate was proven
to be stable. Attack reports which could be
used by multiple nodes were alerts of SSH and
HTTP intrusion attempts. The Snort application
we used for intrusion detection logged many
events which were not usable at all. For exam-
ple computer viruses do not attack a single se-
lected host for a long time. Against that kind of
malware, the PROMIS system is more useful than
ours [12].

The topic of our further research is the type
of alerts to send on the overlay. One has to se-
lect the types of attacks, which are worth col-
lecting and analyzing distributedly. Special at-

1000
1

replication

tention must be paid to the case of Komondor
nodes which run on different operating sys-

Fig. 8. The time needed for the broadcast

In the above figure, results from one hundred test runs
were averaged. The lowest latency was around 15 ms,
the average 0.5 s, and the highest was around 1.3 s.

5. Conclusions

The DHT-based intrusion prevention system presented
in our paper is capable of creating a robust overlay of
the participant software entities. Using a structured over-
lay network, the detection is distributed, but still it cre-
ates little processing and network traffic overhead. The

VOLUME LXIV. + 2009/1

tems and applications: heterogeneity can in-
crease security, as it is easier to see an attack manifest-
ing if the system is immune. Using data collected this
way may however be more difficult, as the protection
must always be tailored to the host and environment in
question.

Later research topics will include protection against
malicious nodes building into the Komondor overlay it-
self. It is very easy to imagine that a compromised node
sends alerts, attack reports about otherwise well-be-
having clients; this way causing denial of service to the
authenticated users of a system. This problem must be
dealt with whatever distributed intrusion detection sys-
tem one uses.

INFOCOMMUNICATIONS JOURNAL

Authors

ZOLTAN CZIRKOS is a PhD student at the Techni-
cal University of Budapest. His main fields of inter-
est are operating system security and peer to peer
communications. In 2005, he won the second award
at the Conference of Scientific Circle of Students,
with his paper “Development of P2P Based Secu-
rity Software”. He published several technical pa-
pers and wrote chapters as co-author in the field of
the collaborative security.

GABOR HOSSZU received the M.Sc. degree from
Technical University of Budapest in electrical en-
gineering and the Academic degree of Technical
Sciences (Ph.D.) in 1992. After graduation he re-
ceived a three-year grant of the Hungarian Acade-
my of Sciences. Currently he is a full-time associ-
ate professor at the Budapest University of Techno-
logy and Economics. He published several techni-
cal papers, chapters and books. In 2001 he recei-
ved the three-year Bolyai Janos Research Grant of
the Hungarian Academy of Sciences. He lead a num-
ber of research projects. His main interests are in-
ternet-based media communications, multicasting,
P2P communications, network intrusion detection
systems, character encoding and VHDL-based sys-
tem design.

References

[1] Czirkos Z.,
Developing a P2P Based Intrusion Detection System,
In Proc. of the Conf. of Scientific Circle of Students,
Budapest, 11-11-2005,
2nd Award (in Hungarian).

[2] Gnutella homepage,
http://www.gnutella.org/

[3] Snort — the de facto standard
for intrusion detection/prevention,
http://www.snort.org/
(Retrieved 26-11-2008)

[4] OSSEC — Open Source Host-based Intrusion
Detection System,
http://www.ossec.net/
(Retrieved 26-11-2008)

[5] P. Maymounkov and D. Mazieres,
Kademlia: A Peer-to-peer Information System Based
on the XOR Metric.
In Proc. of IPTPS02, Cambridge, USA, March 2002.
http://www.cs.rice.edu/Conferences/IPTPS02/

[6] F. Dabek, R. Cox, F. Kaashoek and R. Morris,
Vivaldi: A Decentralized Network Coordinate System.
In Proc. of the ACM SIGCOMM’04 Conference,
Portland, OR, August 2004.

[7] Z. Czirkos, G. Hosszd,
“On the Stability of Peer-to-Peer Networks
in Real-World Environments” — chapter in book,
Encycl. of Information Communication Technology,
2nd ed., Editors: Antonio Cartelli and Marco Palma,
Information Science Reference,
Hershey, USA, 2008. ISBN: 978-1-59904-651-8,
pp.622-630.

[8] D. Karger, E. Lehman, F. T. Leighton, M. Levine,
D. Lewin and R. Panigrahy,

10

Consistent hashing and random trees:
Distributed Caching Protocols for Relieving Hot Spots
on the World Wide Web.
In Proc. of the 29th Annual ACM Symposium on
Theory of Computing, May 1997.
pp.654—663.
[9] I. Stoica, R. Morris, D. Karger,
M. F. Kaashoek and H. Balakrishnan,
Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications.
Technical Report TR-819, MIT, March 2001.

[10] S. Rhea, D. Geels, T. Roscoe and J. Kubiatowicz,
Handling Churn in a DHT.

In Proc. of USENIX Technical Conf., June 2004.

[11] G. Hosszu, Z. Czirkos,

‘Network-Based Intrusion Detection’ chapter in book,
Encycl. of Internet Technologies and Applications,
Editors: Mario Freire and Manuela Pereira,
Information Science Reference,

Hershey, USA, 2007. ISBN: 978-1-59140-993-9,
pp.353-359.

[12] Vasileios Vlachos, Diomidis Spinellis,

A Proactive Malware Identification System based on
the Computer Hygiene Principles.

Information Management and Computer Security,
Vol. 15, No. 4, 2007.

pp.295-312.

[13] Feng Zhou, Li Zhuang, Ben Y. Zhao, Ling Huang,
Anthony D. Joseph and John Kubiatowicz,
Approximate Object Location and Spam Filtering
on Peer-to-peer Systems.

In ACM Middleware 2003.

VOLUME LXIV. » 2009/1

